NANO EXPRESS Open Access

Detection of pH and Enzyme-Free H₂O₂ Sensing Mechanism by Using GdO_x Membrane in Electrolyte-Insulator-Semiconductor Structure

Pankaj Kumar¹, Siddheswar Maikap^{1,2,3*}, Jian-Tai Qiu^{4,5}, Surajit Jana¹, Anisha Roy¹, Kanishk Singh¹, Hsin-Ming Cheng⁶, Mu-Tung Chang⁶, Rajat Mahapatra⁷, Hsien-Chin Chiu¹ and Jer-Ren Yang⁸

Abstract

A 15-nm-thick GdO_x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H_2O_2) detection than those of the bare SiO_2 and 3-nm-thick GdO_x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO_x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO_x membrane, polycrystalline grain has lower energy gap and Gd^{2+} oxidation states lead to change Gd^{3+} states in the presence of H_2O_2 , which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO_x membrane with higher Gd content are responsible for detecting H_2O_2 whereas both bare SiO_2 and thinner GdO_x membranes do not show sensing. A low detection limit of 1 μ M is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H_2O_2 concentration from 1 to 200 μ M owing to more generation of Gd^{3+} ions, and the H_2O_2 sensing mechanism has been explained as well.

Keywords: Enzyme-free H₂O₂, pH detection, GdO_x, Sensing mechanism, Catalytic, EIS structure

Background

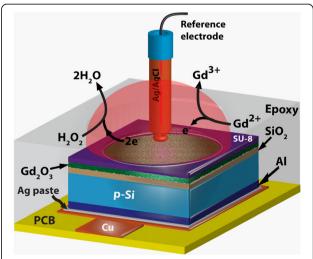
Recently, hydrogen peroxide (H_2O_2) is a major intermediate of biological cycles which has been used as a potential biomarker for oxidative stress diagnosis as well as a major catalyst for immune sensing [1, 2]. On the other hand, it is also an essential compound of bleach industries and waste water treatment. H_2O_2 has a major role in modulating mitochondrial function by inhibiting activities of the mitochondrial enzyme in a fully reversible fashion [3, 4]. The H_2O_2 sensing assay relies on the use of the enzyme horse radish peroxidase (HRP) to oxidize its substrates and detection using spectrophotometer [5]. H_2O_2 sensing in a simple way, with a short

time detection with high specificity, is demanded for future disease diagnosis of the human body, and enzyme-free electro-catalytic methods have gained the attention for H₂O₂ sensing. Therefore, various catalysts such as metal, metal oxides, and redox polymers have been reported to detect H₂O₂ [6-12]. Huang et al. [13] have used the glassy carbon electrode modified by Si nanowire-dispersed CuO nanoparticle. Maji et al. [14] have demonstrated an amperometric H₂O₂ sensor based on reduced graphene oxide-coated silica modified with Au nanoparticles. Wang et al. [15] have developed a H₂O₂ sensor by using MoS₂ nanoparticles. Sun et al. [16] have reported a dumbbell-like Pt-Pd-Fe₃O₄ nanoparticle-modified glassy carbon electrode which shows electro-catalytic reduction. Liu et al. [17] have reported an amperometric H₂O₂ sensor based on a Si substrate modified with carbon nanotube microelectrode coated by Pd nanoparticles. Kong et al. [18] have reported a non-enzymatic H₂O₂ sensor based on a Co₃O₄ nanowire

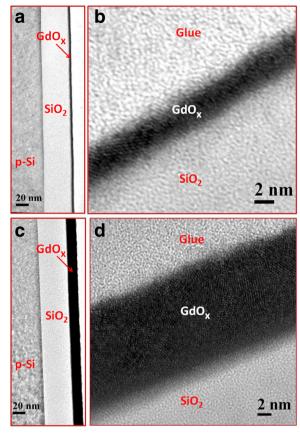
²Bio-Sensor Lab., Biomedical Engineering Research Center, Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan Full list of author information is available at the end of the article

^{*} Correspondence: sidhu@mail.cgu.edu.tw

¹Department of Electronic Engineering, Chang Gung University (CGU), 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan

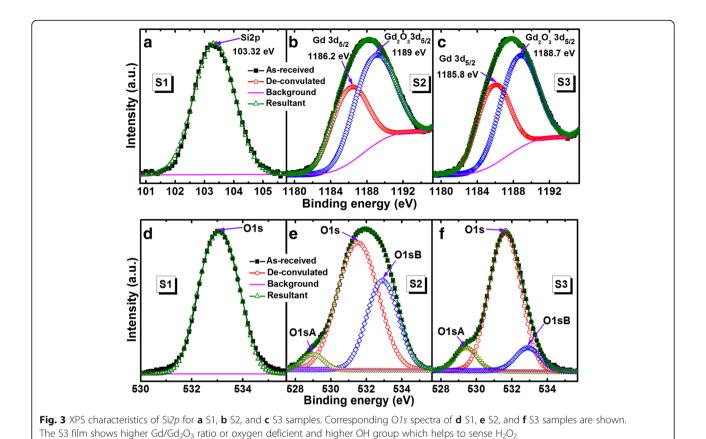

grown over a reduced graphene oxide sheet. Hao et al. [19] have developed an amperometric H₂O₂ sensor based on Fe₂O₃ nanoparticles. Bai et al. [20] have reported a sensor based on carbon dot-decorated multi-walled carbon nano-composites. Silver (Ag) nanowire [21] and nanoparticle-decorated graphene [22] have been also reported for H₂O₂ sensing. Most of the above groups have used different materials using cyclic voltammetry/amperometric methods to sense H₂O₂ (ranging from few nanomolars to millimolars) due to different oxidation states in the presence of H₂O₂. On the other hand, high-k materials such as Al₂O₃ [23], Ta₂O₅ [24], and HfO₂ [25] in an electrolyte-insulator-semiconductor (EIS) structure have been reported for pH sensing only; however, the Gd₂O₃ materials that have been reported are few [26, 27], and even then, there is no report for enzyme-free H2O2 sensing by using a GdO_x (x < 1.5) material in a simple EIS structure. In this paper, detection of a pH and enzymefree H₂O₂ sensing mechanism has been investigated by using a GdO_x membrane in a simple EIS structure for the first time. Polycrystalline grain, Gd content, and oxidation states (Gd²⁺/Gd³⁺) have been confirmed by transmission electron microscope (TEM), X-ray photo-electron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) on grain and boundary regions. The 15-nm-thick GdO_x membrane detects H₂O₂ whereas both 3-nm-thick GdO_x and bare SiO₂ membranes do not sense H₂O₂. Due to the strong catalytic activity of Gd, a low detection limit of 1 µM is obtained. Both time- and concentrationdependent H₂O₂ sensing and its mechanism have been investigated.

Methods


p-type 4-in. Si (100) wafer was cleaned by the Radio Corporation of America (RCA) process. Prior to thermal growth of SiO₂, HF dip was used to remove native oxide from the surface. After the cleaning process, a 40-nmthick SiO₂ layer was grown as an insulating layer by dry oxidation process at 950 °C. Then, the back-side-grown SiO₂ layer was removed by using a buffer oxide etching (BOE) solution. To fabricate the EIS chip, a 300-nmthick Al film was deposited on the back side of the Si wafer. The sensing membrane area was defined by standard photolithography process using a negative photoresist-SU8. Then, EIS devices were attached on a printed circuit board having copper lines. An epoxy layer was used to encapsulate the EIS structure and the copper line. Therefore, a sensor (S1) using SiO₂ membrane was fabricated. Our fabrication process of EIS structure can be found elsewhere [28]. This SiO₂ sensing membrane was modified by deposition of 3-nm- (S2) and 15-nm-thick (S3) GdO_x films. The GdO_x film was deposited by electron beam evaporation. The Gd₂O₃ granules were used during deposition, and the deposition rate was 6 nm/min. A schematic view of the Gd₂O₃- (or GdO_x (x < 1.5)) modified SiO₂ sensor is shown in Fig. 1. To probe the thickness and microstructure of GdO_x films, low-voltage spherical aberration corrected field emission TEM (Cs-corrected FE-TEM) was performed. The model number is JEOL JEM-ARM200F with accelerating voltages of 60, 120, and 200 kV. In addition, a Cs-corrected FE-TEM Oxford energy spectrometer (energy-dispersive spectroscopy, EDS) and electron loss EDS (EELS, Model 965 QuantumERTM) were used to observe the elemental composition on polycrystalline grain and boundaries. The ambient temperature of our laboratory was 21 ± 3 °C and relative humidity was 50 ± 10 %. The elemental composition was investigated by XPS analyzing chamber. The vacuum of the XPS chamber was 1×10^{-9} Torr. The spectra were recorded by using an Al K∝ monochrome X-ray at an energy of 1486.6 eV. The scanning energy range from 0 to 1350 eV was used. All spectra were calibrated by C1s spectrum at a centered peak energy of 284.6 eV. After depositing the GdO_x films on the SiO₂/Si substrates, the samples were transferred immediately to the XPS chamber. The capacitance-voltage (C-V) measurements were performed by using Agilent 4284A LCR meter and an Ag/AgCl reference electrode was used. The measurement frequency was 100 Hz. The sweep voltage was applied on the Ag/AgCl electrode. The reference voltage (V_r) was measured at 50 % of accumulation capacitance.

Results and Discussion

Figure 2 shows the cross-sectional TEM images of the S2 and S3 sensors. The thickness of SiO_2 is 41.2 nm (Fig. 2a), and the thickness of the GdO_x film is 3.3 nm (Fig. 2b). The TEM image of the S3 sensor shows that the thickness of SiO_2 is 41.5 nm (Fig. 2c) and the


Fig. 1 Schematic view of our pH and H_2O_2 sensor using Gd_2O_3 (or GdO_x (x < 1.5)) membrane and demonstration of H_2O_2 sensing mechanism

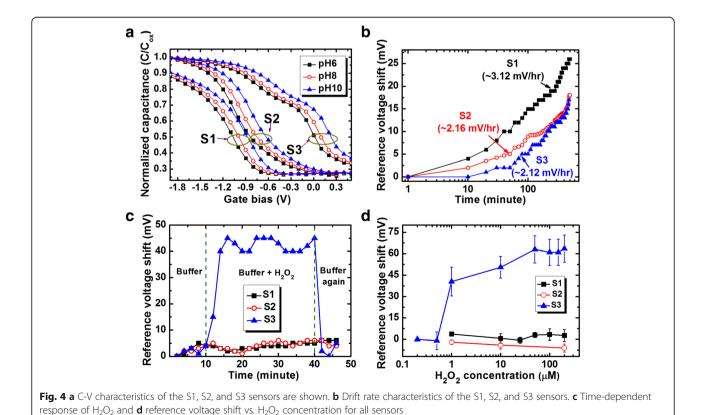


Fig. 2 TEM images of **a** 3-nm-thick GdO_x membrane on 40-nm-thick SiO_2 layer (S2) and **b** zoom in view of a. TEM images of **c** 15-nm-thick GdO_x membrane (S3) and **d** zoom in view of c. Thicker membrane shows clear polycrystalline grain

thickness of the GdO_x film is 14.8 nm (Fig. 2d). Therefore, the thickness of SiO_2 is 40 ± 2 nm and the thickness of GdO_x is 15 ± 0.5 nm. The thicker GdO_x film shows clearly polycrystalline grains and its boundary [29, 30], which will help to detect H₂O₂. Elemental composition of the SiO₂ and GdO_x films is observed by XPS, which is shown in Fig. 3. The peak binding energy of Si2p spectra for the S1 sample is 103.35 eV (Fig. 3a), which is similar to the reported value of SiO2 at 103.58 eV [31]. The spectra are fitted by Shirley background subtraction and Gaussian/Lorentzian functions. The Si2p spectrum shows one characteristic peak after de-convolution. Similarly, one characteristic peak of O1s centered at 531.5 eV is also observed (Fig. 3d). Lower values of full-width half-maximum (FWHM) are found to be 1.84 and 1.64 eV for the Si2p and O1s spectra, respectively. The ratio of O:Si is 1.84, which signifies the stoichiometric SiO₂. An XPS spectrum of GdO_x shows $Gd3d_{3/2}$ and $Gd3d_{5/2}$ doublet with binding energy of 1220.5 and 1188.3 eV, respectively (not shown here). However, peak binding energies of $Gd3d_{3/2}$ and $Gd3d_{5/2}$ spin-orbits are reported as 1218 and 1186 eV, respectively [32]. XPS spectra of $Gd3d_{5/2}$ core-level electrons are 1189 eV for S2 (Fig. 3b) and 1188.7 eV for S3 (Fig. 3c) samples, which are identified to be Gd_2O_3 $3d_{5/2}$ or Gd_2O_3 films. Corresponding lower binding energy peaks at 1186.2 and 1185.8 eV indicate the metallic $Gd3d_{5/2}$ peaks for the S2 and S3 samples, respectively. The area ratios of Gd/Gd₂O₃ are found to be 0.64:1 and 0.69:1 for the S2 and S3 samples, respectively, which show higher percentage of Gd in the S3 samples owing to polycrystalline grains. However, the O1s core-level spectra show three distinct peaks for the S2 (Fig. 3e) and S3 (Fig. 3f) samples. The strong peaks at 531.5 eV correspond to the oxygen in the Gd₂O₃ film, whereas lower (O1s A) and higher (O1s B) binding energy peaks centered at 529 and 532.9 eV are attributed to the hydroxyl (OH⁻) and carbonate groups in Gd₂O₃ films, respectively [33, 34]. Moreover, the lower binding energy peak corresponds to Gd-O bonding or GdO_x [35]. The area ratios of O1s A and O1s B with respect to O1s are 0.04:1 and 0.48:1 for the S2 samples whereas those values are 0.08:1 and 0.1:1 for the S2 samples, respectively. Therefore, the S2 samples show higher percentage of O1s B owing to higher carbonate groups in the GdO_x films, which is insensitive to H_2O_2 sensing. On the other hand, the S3 samples have higher percentage of O1sA owing to higher OH- and higher Gd content in Gd_2O_3 film, i.e., GdO_x film. So, oxygen can be bonded loosely with Gd on a polycrystalline grain boundary as well as a thicker GdO_x film will help to sense H_2O_2 , which will be explained below.

Figure 4a shows the C-V characteristics with pH values from 6 to 10 for the S2 and S3 sensors. The V_r values of the S2 sensors are -0.84, -0.75, and -0.63 V for pH 6, 8, and 10, while those values are 0.01, 0.1, and 0.23 V for the S3 sensors, respectively. The V_r values of the S3 sensor are shifted towards the positive direction and are lower than the V_r values of the S2 sensors. This is due to lower oxide charges for the thicker GdO_x membrane (55 vs. 43 nm [36]) and polycrystalline grains with higher OH ions (Fig. 3f). The pH sensitivity values are found to be 51.2 and 54.2 mV/pH for the S2 and S3 sensors, respectively, which are higher than the pH sensitivity of approximately 35 mV/pH from pH 2 to 10 [28, 37] and 42 mV/pH from pH 6 to 10 for the S1 sensors. The pH sensitivity of a 30-nm-thick GdO_x membrane is approximately 51.7 mV/pH (not shown C-V curves), which is slightly lower than the S3 sensors. The pH sensitivity value of our GdO_x membrane is comparable with other reported values of 48.29 mV/pH by Wang et al. [27], 64.78 mV/pH by Chang et al. [38], and 55 mV/pH by Yang et al. [39]. However, the S3 sensors show the lowest drift rate as compared to the S1 and S2 sensors (2.12 mV/h vs. 3.12 mV/h and 2.16 mV/h), as shown in Fig. 4b. The drift characteristics were measured a long time up to 500 min at pH 7 buffer solution. Considering a

low drift rate (2.12 mV/h), the pH detection limit of the S3 sensors is 0.039 pH, which is due to high pH sensitivity. It is interesting to note that the GdO_x membrane will detect H₂O₂. Figure 4c shows the time-dependent response of H₂O₂ for the S3 sensors. A negligible V_r shift is observed for pH 7 buffer solution up to 10 min. By including H₂O₂ with a concentration of 1 µM, a good V_r shift of approximately 40 mV is observed because of Gd¹⁺, Gd²⁺, and Gd³⁺ oxidation states (https://en.wikipedia.org/wiki/ Work function) [40]. On the other hand, both S1 and S2 sensors do not show H₂O₂ sensing. When in contact with H₂O₂, the Gd²⁺ changes to the Gd³⁺ oxidation state and provides electrons for the reduction of H₂O₂. H₂O as a byproduct is observed (Fig. 1). However, the pH value is unchanged by adding H₂O₂ in the buffer solution. A short response time of <2 min is needed without enzyme. After washing out, the sensor does not show any V_r shift owing to the reduction from the Gd³⁺ to Gd²⁺ states. Therefore, this sensor can be used repeatedly for H₂O₂ sensing. Based on our knowledge, this is the first ever report of H_2O_2 detection with a polycrystalline GdO_x membrane. Basically, the oxidation/reduction of the GdO_x material in contact with H₂O₂ with buffer solutions is responsible for the V_r shifting, which is shown by chemical reactions below.

$$Gd \leftrightarrow Gd^{2+} + 2e^{-} \leftrightarrow Gd^{3+} + 3e^{-} \tag{1}$$

$$H_2O_2 + e^- \leftrightarrow OH^- + OH^*$$
 (2)

$$OH^* + e^- \leftrightarrow OH^- \tag{3}$$

$$2OH^{-} + 2H^{+} \leftrightarrow 2H_{2}O \tag{4}$$

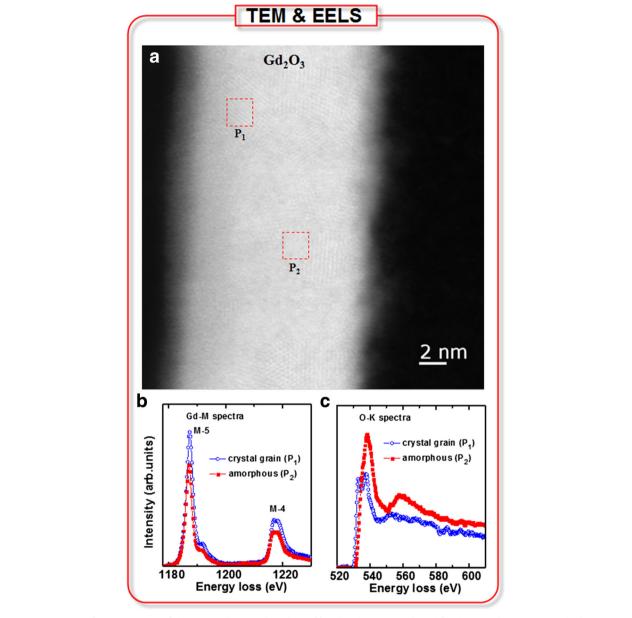

By following the above Eqs. (1), (2), (3), and (4), the oxidation state of Gd changes from Gd²⁺ to Gd³⁺. The H⁺ ions are supplied by buffer solutions. The V_r shift increases with increasing H₂O₂ concentration from 1 to 200 μM because the generation of Gd³⁺ ions increases (Fig. 4d). A moderate sensitivity of 0.13 mV/µM is obtained from a linear range of 1 to 200 μM whereas it is 82 mV/ μ M from a linear range of 0.5 to 1 μ M. Our detection limit of 1 µM is inferior than the published results [9-12, 15, 16, 41-43], comparable with the published results [44–47], and superior than the published results [13, 17, 18, 20, 48-52] in literature by using different sensing methods, as shown in Table 1. Further study is needed to improve the detection limit in the future. However, our sensing method's surface potential is changed when in contact with H₂O₂ because of the catalytic activity of Gd. It is known that Gd₂O₃ material is n-type and the energy difference in between the Fermi level and the conduction band (E_c) is 2.71 eV [53]. The electron affinity of Gd₂O₃ is 1.45 eV by considering the conduction band offset of 2.6 eV with Si [54]. The work

Table 1 Comparison of linear range and detection limit of H_2O_2 published in literature [9–13, 15–18, 20, 41–52]

Sensing materials	pH value	Linear range (µM)	Detection limit (μΜ)
MoS ₂ NP [15]	7.4	5–100	0.002
WS ₂ NS [10]	7.4	_	0.002
Pt-Pd-Fe ₃ O ₄ [16]	7.4	0.02-0.1, 2-14,000	0.005
Pt-Pd/rGO [11]	7.0	0.1-37.6	0.01
Au NP [12]	7.0	2-5000	0.01
Pt NP [9]	7.2	3-300	0.03
rGO [41]	7.0	0.05-1500	0.05
Au/C/Pt [42]	7.0	9.0–1860, 1860–7110	0.13
Au NP [43]	6.8	3–605	0.18
Ag NP [44]	7.5	100-10,000	0.88
GS/CeO ₂ -ZnO NP [45]	7.0	2-20,000	1.1
Pt-Pd and Pt-Ir [46]	7.4	2.5-125	1.2
Pt NP [47]	6.9	5-2000	1.23
CeO ₂ NP/N-rGO [48]	7.0	1.8-920.8	1.3
CuO [13]	7.0	10-13,180	1.6
Ag NPs/PPy/Fe ₃ O ₄ [49]	7.2	5–11,500	1.7
Pd NP [17]	7.4	2–1300	2
Co ₃ O ₄ NW [18]	7.4	15–675	2.4
Carbon dots [20]	7.4	3–300	3
Se/Pt [50]	7.0	10-15,000	3.1
Ag NP [51]	7.0	25-500, 500-5500	10
Co-Mn [52]	7.2	100-25,000	15
GdO_x in EIS structure (this work)	7.0	1–200	1

NP nanoparticle, NS nanosheet, rGO reduced graphene oxide, GS graphene sheet, NW nanowire

function of Gd increases from 2.9 eV (https://en.wikipe dia.org/wiki/Work_function) to 4.16-4.76 eV [53-55] after oxidation. This suggests that the work function of GdO_x is modulated by oxidation/reduction or Gd³⁺ concentration as well as the energy band bending of Si is changed. In consequence, the V_r is needed to bring Si energy bands to be flat. On the other hand, the S1 and S2 sensors do not show H₂O₂ detection because they do not have redox properties. The thinner GdO_x film (S2) has a smaller crystalline grain with less Gd content (Fig. 3), while the S3 sensor has larger crystalline grain (Fig. 5a) with higher Gd content. Figure 5b shows electron energy loss spectroscopy of Gd measured at polycrystalline grain (P_1) and amorphous region or grain boundary (P_1) . The regions of P1 and P2 are marked on Fig. 5a. The edges of the Gd M-4 and M-5 peaks at the P₁ region are located at 1216.8 and 1187.5 eV, while those values at the P₂ region are 1216.5 and 1187 eV, respectively. Du et al. [56] have reported the M-4 and M-5 peak values of 1217 and 1185 eV for the Gd(OH)₃ nanorods. The edges of the O-K

Fig. 5 a TEM image for EELS spectra of the S3 membranes. The edges of **b** Gd and **c** O-K are plotted for the P_1 and P_2 regions marked on a. The polycrystalline grain corresponds to Gd^{2+} and the grain boundary corresponds to Gd^{3+} oxidation states

peak at both P_1 and P_2 regions are located at 538.5 eV, as shown in Fig. 5c, which is close to the reported value of 536.5 eV [56]. It is interesting to note that another peak of crystalline grain (P_1) is located at 532.9 eV, which is shifted downwards to 3.9 eV. Egerton has reported the reduced energy gap of SiO_x at the SiO_2/Si interface with energy shift downwards to 3 eV [57]. In our case, this reduced energy gap is observed in the polycrystalline grain region. Therefore, the crystalline grain is GdO_x (or Gd^{2+}) and the amorphous region or grain boundary is Gd_2O_3 (or Gd^{3+}). When in contact with H_2O_2 , the oxidation state of the S3 sensor changes from Gd^{2+} to Gd^{3+} and the crystalline

grain takes a major role, which is confirmed by EELS spectra. So, the thicker crystalline GdO_x membrane can sense H_2O_2 repeatedly which will be useful to detect human disease in the near future.

Conclusions

Higher pH sensitivity (54.2 m/pH) and the enzyme-free $\rm H_2O_2$ sensing characteristics have been investigated by using 15-nm-thick $\rm GdO_x$ membranes for the first time. The polycrystalline grain and thickness of the $\rm GdO_x/SiO_2$ film have been observed by TEM image. XPS characteristics of the S3 membrane show higher $\rm Gd/Gd_2O_3$

ratio than the S2 membrane (0.69/1 vs. 0.64/1). The S3 membrane shows GdO_x and higher OH content in the crystalline grain, which help to sense H₂O₂ whereas both S1 and S2 sensors do not show H₂O₂ detection. Therefore, a larger polycrystalline GdO_x grain has oxidation/reduction properties when in contact with H₂O₂, which is confirmed by EELS. During oxidation, the Gd²⁺ changes to the Gd3+ state and the amount of Gd3+ ions increases with increasing H₂O₂ concentration from 1 to 200 µM. A low defection limit of 1 µM is obtained owing to the catalytic effect of Gd. The time-dependent response and the sensing mechanism of H₂O₂ have been explored. Due to the short time detection of H₂O₂ in the EIS structure, this novel GdO_x sensing membrane paves a way to diagnose other diseases of the human body in the near future.

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under contract numbers MOST-104-2221-E-182-075 and MOST-105-2221-E-182-002 and Chang Gung Memorial Hospital (CGMH), Linkou, under contract numbers CMRPD270021 and CMRPD2E0091. The authors are grateful to Mr. S. Chatterjee for the partial support to measure the concentration-dependent hydrogen peroxide sensing.

Authors' Contributions

PK fabricated these sensors and analyzed the data under the instruction of SM. JTQ helped to analyze the sensing mechanism and application of this sensor. SJ and AR helped to measure the pH and $\rm H_2O_2$ sensing characteristics and checked the repeatability of these sensors. They review the papers under the instruction of SM. KS helped to check the redox characteristics and review the papers under the instruction of SM. HMC measured the XPS and analyzed the spectra. MTC helped to obtain TEM and EELS. RM helped to analyze the sensing characteristics. HCC helped to deliver the idea for deposition of sensing membrane by using electron beam evaporation. JRY analyzed the EELS spectra for oxidation and reduction. All authors contributed to the revision of the manuscript, and they approved it for publication.

Competing Interests

The authors declare that they have no competing interests.

Author details

¹Department of Electronic Engineering, Chang Gung University (CGU), 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan. ²Bio-Sensor Lab., Biomedical Engineering Research Center, Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan. ³Center for Reliability Science and Technologies (CReST), Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan. ⁴Department of Biomedical Sciences, School of Medicine, Chang Gung University (CGU), Tao-Yuan 333, Taiwan. ⁵Division of Gyn-Oncology, Department of Obs/Gyn, Chang Gung Memorial Hospital (CGMH), Tao-Yuan 333, Taiwan. ⁶Material and Chemical Research Laboratories (MRL), Industrial Technology Research Institute (ITRI), Hsinchu 195, Taiwan. ⁷Department of Electronics and Communications Engineering, National Institute of Technology (NIT), Durgapur 713209, India. ⁸Department of Materials Science and Engineering, National Taiwan University (NTU), Taipei 106, Taiwan.

Received: 13 August 2016 Accepted: 22 September 2016 Published online: 29 September 2016

References

 Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689

- Wang J, Chen XJ, Liao KM, Wang GH, Han M (2015) Pd nanoparticlemodified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Res Lett 10:311
- 3. Nulton-Persson AC, Szweda LI (2001) Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem 276:23357
- Veal EA, Day AM, Morgan BA, Morgan D (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1
- Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cell 29:539
- Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15
- Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49
- Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO₂/graphene oxide nanocomposite. Talanta 82:1637
- Zhang M, Liao C, Mak CH, You P, Mak CL, Yan F (2016) Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci Rep 5:1
- Tang J, Quan Y, Zhang Y, Jiang M, Al-Enizi AM, Kang B, An T, Wang W, Xia L, Gong X, Zheng G (2016) Three-dimensional WS₂ nanosheet networks for H₂O₂ produced for cell signaling. Nanoscale 8:5786
- Sun Y, Zheng H, Wang C, Yang M, Zhou A, Duan H (2016) Ultrasonicelectrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode. Nanoscale 8:1523
- Vilian TE, Veeramani V, Chen S-M, Madhu R, Kwak CH, Huh YS, Han YK (2015) Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H₂O₂ and nitrite biosensor. Sci Rep 5:18390
- Huang J, Zhu Y, Zhong H, Yang X, Li C (2014) Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H₂O₂ detection. ACS Appl Mater Interfaces 6:7055
- Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao Y (2015) Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces 7:9807
- Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J, Li M (2013) Biosensor based on ultrasmall MoS₂ nanoparticles for electrochemical detection of H₂O₂ released by cells at the nanomolar level. Anal Chem 85:10289
- Sun X, Guo S, Liu Y, Sun S (2012) Dumbbell-like PtPd–Fe₃O₄ nanoparticles for enhanced electrochemical detection of H₂O₂. Nano Lett 12:4859
- Liu Y, Sun G, Jiang C, Zheng XT, Zheng L, Li CM (2014) Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Microchim Acta 181:63
- 18. Kong L, Ren Z, Zheng N, Du S, Wu J, Tang J, Fu H (2015) Interconnected 1D ${\rm Co_3O_4}$ nanowires on reduced graphene oxide for enzymeless ${\rm H_2O_2}$ detection. Nano Res 8:469
- Hao C, Shen Y, Wang Z, Wang X, Feng F, Ge C, Zhao Y, Wang K (2016) Preparation and characterization of Fe₂O₃ nanoparticles by solid phase method and its hydrogen peroxide sensing properties. ACS Sustainable Chem Eng 4:1069
- Bai J, Sun C, Jiang X (2016) Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H₂O₂ in living cells. Anal Bioanal Chem 408:4705
- Zhang M, Wang Z (2013) Nanostructured silver nanowires-graphene hybrids for enhanced electrochemical detection of hydrogen peroxide. Appl Phys Lett 102:213104
- Zhan B, Liu C, Shi H, Li C, Wang L, Huang W, Dong X (2014) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional grapheme. Appl Phys Lett 104:243704
- 23. Oha JY, Jang HJ, Cho WJ, Islam MS (2012) Highly sensitive electrolyteinsulator-semiconductor pH sensors enabled by silicon nanowires with Al₂O₃/SiO₂ sensing membrane. Sens Actuators B 171–172:238
- Schoning MJ, Brinkmann D, Rolka D, Demuth C, Poghossian A (2005) CIP (cleaning-in-place) suitable 'non-glass' pH sensor based on a Ta₂O₅- gate EIS structure. Sens Actuators B 111–112:423
- Lu TF, Chuang HC, Wang JC, Yang CM, Kuo PC, Lai CS (2011) Effects of thickness effect and rapid thermal annealing on pH sensing characteristics of thin HfO₂ films formed by atomic layer deposition. Jpn J Appl Phys 50:1

- Yang HW, Huang CY, Lin CW, Liu HL, Huang CW, Liao SS, Chen PY, Lu YZ, Wei KC, Ma CC (2014) Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials 35(24):6534. doi:10.1016/j.biomaterials.2014.04.057
- Wang JJ, Lin SR, Kao CH, Hu CH, Chen H (2015) Electrolyte-insulatorsemiconductor (ElS) with Gd₂O₃-based sensing membrane for pH sensing application. J New Mat Electrochem Syst 18:1
- Kumar P, Maikap S, Prakash A, Tien TC (2014) Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure. Nanoscale Res l ett 9:179
- Manna S, Aluguri R, Katiyar A, Das S, Laha A, Osteen HJ, Ray SK (2013) MBEgrown Si and Si_{1-x}Ge_x quantum dots embedded within epitaxial Gd₂O₃ on Si (111) substrate for floating gate memory device.Nanotechnology 24:505709
- Mahapatra R, Maikap S, Lee JH, Kar GS, Dhar A, Hwang NM, Kim DY, Mathur BK, Ray SK (2003) Effects of interfacial nitrogen on the structural and electrical properties of ultrathin ZrO₂ gate dielectrics on partially strain compensated SiGe/Si heterolayers. Appl Phys Lett 82:4331
- 31. Jana D, Dutta M, Samanta S, Maikap S (2014) RRAM characteristics using a new Cr/GdO_x/TiN structure. Nanoscale Res Lett 9:680
- Ahren M, Selegard L, Klasson A, Soderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engstrom M, Kall PO, Uvda K (2010) Synthesis and characterization of PEGylated Gd₂O₃ nanoparticles for MRI contrast enhancement. Langmuir 26:5753
- Majeeda S, Shivashankar SA (2014) Rapid, microwave-assisted synthesis of Gd₂O₃ and Eu:Gd₂O₃ nanocrystals: characterization, magnetic, optical and biological studies. J Mater Chem B 2:5585
- 34. Khan SA, Gambhir S, Absar A (2014) Extracellular biosynthesis of gadolinium oxide (Gd_2O_3) nanoparticles, their bio-distribution and bio-conjugation with the chemically modified anticancer drug taxol. J Nanotechnol 5:249
- Cho HK, Cho HJ, Lone S, Kim DD, Yeum JH, Cheong IW (2011) Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy. J Mater Chem 21:15486
- Duenas S, Castan H, Garcia H, Gomez A, Bailon L, Kukli K, Hatanpaa T, Lu J, Ritala M, Leskela M (2007) Electrical properties of atomic-layer-deposited thin gadolinium oxide high-k gate dielectrics. J Electrochem Soc 154:G207
- Maikap S, Prakash A, Banerjee W, Das A, Lai CS (2010) Characteristics of pH sensors fabricated by using protein mediated CdSe/ZnS quantum dots. Microelectron Reliab 50:747
- 38. Chang LB, Ko HH, Jeng MJ, Lee YL, Lai CS (2007) pH-sensitive ${\rm Gd}_2{\rm O}_3$ / ${\rm SiO}_2$ stacked capacitors prepared by pure water anodic oxidation. J Electrochem Soc 154:J150
- Yang CM, Wang CY, Lai CS (2014) Characterization on pH sensing performance and structural properties of gadolinium oxide post-treated by nitrogen rapid thermal annealing. J Vac Sci Technol B 32:03D113
- 40. Hong M (1999) Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation. Science 283:1897
- 41. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603
- Zhang Y, Li Y, Jiang Y, Li Y, Li S (2016) The synthesis of Au@C@Pt coredouble shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing. Appl Surf Sci 378:375
- Bao S, Du M, Zhang M, Zhu H, Wang P, Yang T, Zou M (2014) Fabrication of gold nanoparticles modified carbon nanofibers/polyaniline electrode for H₂O₂ determination. J Electrochem Soc 161:H816
- 44. Wu Z, Yang S, Chen Z, Zhang T, Guo T, Wang Z, Liao F (2013) Synthesis of Ag nanoparticles-decorated poly(m-phenylenediamine) hollow spheres and the application for hydrogen peroxide detection. Electrochim Acta 98:104
- Yang X, Wu F, Ouyang Y, Hu Y, Zhang H, Ji Y (2016) Zinc oxide nanoparticles decorated on graphene sheets@cerium oxide nanocomposites to sensitize gold electrode for the nonenzymatic hydrogen peroxide detection. J Electrochem Soc 163:H834
- Chen KJ, Pillai KC, Rick J, Pan CJ, Wang CH, Liu CC, Hwang BJ (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotubes enzyme-free, mediator-less amperometric sensor for H₂O₂. Biosens Bioelectron 33:120
- Niu X, Zhao H, Chen C, Lan M (2012) Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide. Electrochim Acta 65:97
- Yang S, Li G, Wang G, Liu L, Wang D, Qu L (2016) Synthesis of highly dispersed CeO₂ nanoparticles on N-doped reduced oxide graphene and their electrocatalytic activity toward H₂O₂. J Alloy Compd 688:910

- 49. Qi C, Zheng J (2015) Novel nonenzymatic hydrogen peroxide sensor based on Fe $_3$ O $_4$ /PPy/Ag nanocomposites. J Electroanal Chem 747:53
- Li Y, Zhang JJ, Xuan J, Jiang LP, Zhu JJ (2010) Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem Commun 12:777
- Roof BR, Ojani R, Hasheminejad E, Rashid-Nadimi S (2012) Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H₂O₂. Appl Surf Sci 258:2788
- Kuo CC, Lan WJ, Chen CH (2014) Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 6:334
- Chiu YP, Huang BC, Shih MC, Shen JY, Chang P, Chang CS, Huang ML, Tsai M-H, Hong M, Kwo J (2011) Atomic-scale determination of band offsets at the Gd₂O₃/GaAs (100) hetero-interface using scanning tunneling spectroscopy. Appl Phys Lett 99:212101
- Fissel A, Czernohorsky M, Osten HJ (2006) Growth and characterization of crystalline gadolinium oxide on silicon carbide for high-application superlattices. Microstruct 40:551
- Lipp E, Shahar Z, Bittel BC, Lenahan PM, Schwendt D, Osten HJ, Eizenberg M (2011) Trap-assisted conduction in Pt-gated Gd₂O₃/Si capacitors.
 J Appl Phys 109:073724
- Du G, Tendeloo GV (2005) Preparation and structure analysis of Gd(OH)₃ nanorods. Nanotechnology 16:595
- Egerton RF (2009) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72:016502

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com